Sequence-to-Sequence Acoustic-to-Phonetic Conversion Using Spectrograms and Deep Learning

نویسندگان

چکیده

Distinctive phonetic features (DPFs) abstractedly describe the place, manner of articulation, and voicing language phonemes. While DPFs are powerful speech signals that capture unique articulatory characteristics each phoneme, task DPF extraction is challenged by need for efficient computational model. Unlike ordinary acoustic can be directly determined form waveform using closed-form expressions, elements extracted from machine learning (ML) techniques. Therefore, objective developing an acoustic-to-phonetic converter high accuracy low complexity, it important to select input simple, yet carry adequate information. This paper examines effectiveness spectrogram as feature with modeled two deep techniques: belief network (DBN) convolutional recurrent neural (CRNN). The proposed method applied on Modern Standard Arabic (MSA). Multi-label modeling considered in converter. techniques were evaluated proper evaluation measures accommodate imbalanced nature elements. results showed CRNN more accurate extracting than DBN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voice Conversion Using Sequence-to-Sequence Learning of Context Posterior Probabilities

Voice conversion (VC) using sequence-to-sequence learning of context posterior probabilities is proposed. Conventional VC using shared context posterior probabilities predicts target speech parameters from the context posterior probabilities estimated from the source speech parameters. Although conventional VC can be built from non-parallel data, it is difficult to convert speaker individuality...

متن کامل

Convolutional Sequence to Sequence Learning

A. Weight Initialization We derive a weight initialization scheme tailored to the GLU activation function similar to Glorot & Bengio (2010); He et al. (2015b) by focusing on the variance of activations within the network for both forward and backward passes. We also detail how we modify the weight initialization for dropout. A.1. Forward Pass Assuming that the inputs x l of a convolutional laye...

متن کامل

Convolutional Sequence to Sequence Learning

The prevalent approach to sequence to sequence learning maps an input sequence to a variable length output sequence via recurrent neural networks. We introduce an architecture based entirely on convolutional neural networks.1 Compared to recurrent models, computations over all elements can be fully parallelized during training and optimization is easier since the number of non-linearities is fi...

متن کامل

Multitask Sequence-to-Sequence Models for Grapheme-to-Phoneme Conversion

Recently, neural sequence-to-sequence (Seq2Seq) models have been applied to the problem of grapheme-to-phoneme (G2P) conversion. These models offer a straightforward way of modeling the conversion by jointly learning the alignment and translation of input to output tokens in an end-to-end fashion. However, until now this approach did not show improved error rates on its own compared to traditio...

متن کامل

Morphological Inflection Generation Using Character Sequence to Sequence Learning

Morphological inflection generation is the task of generating the inflected form of a given lemma corresponding to a particular linguistic transformation. We model the problem of inflection generation as a character sequence to sequence learning problem and present a variant of the neural encoder-decoder model for solving it. Our model is language independent and can be trained in both supervis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2021

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2021.3083972